
Mid-Semestral Exam 2013-2014

February 3, 2016

Problem 1.(i). Prove that X5 + 12X3 − 12X + 12 is irreducible over the field Q(e2πi/7).

Proof. Let f(X) = X5+12X3− 12X +12 and ζ = e2πi/7. We are going to use the following
facts :

• for any integer n ≥ 1, let ζ be a primitive nth root of unity. Then [Q(ζ) : Q] = φ(n)
where φ is the Euler’s phi function.

For us n = 7, hence [Q(ζ) : Q] = φ(7) = 6. Also by using Eisenstein’s criterion we may
conclude that the polynomial f(X) is irreducible over Q (use the prime 3). Hence for a
root α of f(X) we must have [Q(α) : Q] = 5. Now note that 6 and 5 are coprime and
hence [Q(α, ζ) : Q] = 5 · 6 = 30 (here we are using the following result : E1, E2 be two
extensions over F of degree d1, d2 respectively where (d1, d2) = 1 and let E = E1E2, then
[E : F ] = d1d2). It follows that [Q(α, ζ) : Q(ζ)] = 5. But α satisfies the polynomial f(X) ∈
Q(ζ)[X], hence its minimal polynomial must divide f(X). From the degree computation
done above, clearly the minimal polynomial is also of degree 5. Hence f(X) must be
irreducible over Q(ζ).

Problem 1.(ii). Determine what the characteristic must be for the polynomialX4+2X3+
3X2 + 8X + 1 to have a multiple root.

Proof. Let f(X) = X4 + 2X3 + 3X2 + 8X + 1 be the given polynomial and let g(X) =
4X3 + 6X2 + 6X + 8 be its derivative with respect to X . If α is a multiple root of f(X), in
some characteristic, then we must have both f(α) = 0 and g(α) = 0. Now observe that

4f(α)− α · g(α) = 2α3 + 6α2 + 24α + 4 = h(α)⇒ h(α) = 0.

Further

2h(α)− g(α) = 6α2 + 42α = 0.

Clearly α = 0 is not possible in any characteristic (because then 1 = 0). Hence we must
have:

6α + 42 = 0.
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Note that the relations that we have derived involving α are valid in any characteristic
(because the operations wwe have performed are deined in any characteristic). Now it
is clear that if the characteristic of the field is neither 2 nor 3 then α = −7. But then
f(−7) = 0 ⇒ 1807 = 0 & 1807 = 13 × 139 where 13, 139 are both primes. Similarly
g(−7) = 0 ⇒ 1112 = 0 & 1112 = 8 × 139. Clearly if the characteristic of the base field is
139, we have −7 as a multiple root.

Now if the characteristic of the base field is 2, then f(X) = X4+X2+1 = (X2+X+1)2,
hence clearly f(X) has multiple roots. If the characteristic of the base field is 3, then
f(X) = X4−X3−X +1 = (X − 1)2(X2 +X +1), then 1 is a multiple root of f(X). Thus,
the only characteristics for which f(X) has a multiple root are 2, 3, and 139.

Problem 2.(i). If f is a monic irreducible polynomial of degree n over Q, show :

(a) the Galois group of f acts transitively on the set of roots of f in a splitting field;

(b) the discriminant of f is a square in Q if and only if the Galois group of f consists of
even permutations.

Proof. Consult any text book of Galois theory.

Problem 2.(ii). Determine the Galois group of the polynomial X4− 2 over Q. Use this to
find the intermediate fields between Q and Q( 4

√
2).

Proof. Let f(X) = X4 − 2. Let K be the splitting field of f(X) over Q. Now we have
factorization:

X4 − 2 = (X2 −
√
2)(X2 +

√
2) = (X − 4

√
2)(X +

4
√
2)(X − 4

√
2i)(X +

4
√
2i)

where i =
√
−1 and 4

√
2 is the real 4-th root of 2. Then K = Q( 4

√
2,− 4
√
2, 4
√
2i,− 4

√
2i) =

Q( 4
√
2, i). Observe that f(X) is irreducible in Q[X] because none of its roots lie in Q hence

it can not have a linear factor and from the above factorization clearly its degree 2 factors
also do not lie in Q[X]. Hence the minimal polynomial of 4

√
2 over Q is f(X). Also the

minimal polynomial of i over Q is X2 + 1. As Q( 4
√
2) ⊂ R ⇒ i /∈ Q( 4

√
2), hence X2 + 1 is

the minimal polynomial of i over Q( 4
√
2). It follows that [Q( 4

√
2) : Q] = 4, [K : Q( 4

√
2)] =

2⇒ [K : Q] = 8. Moreover K/Q is a Galois extension.
LetG = Gal(K/Q). Hence |G| = 8. Now element ofG can be described by its action on

4
√
2 and i. But as elements of Galois group permutes the roots of irreducible polynomials,

we see that any element of G must take i 7→ ±i and 4
√
2 7→ ± 4

√
2,± 4
√
2i. Thus there are 8

possibilities which agrees with our previous conclusion. Let σ, τ be elements of G defined
as follows:

σ(i) = i, σ(
4
√
2) =

4
√
2 and τ(i) = −i, τ( 4

√
2) =

4
√
2.

It is easy to see that

σ4 = Id, τ 2 = Id and τστ−1 = σ−1.
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Hence clearly

G = {Id, σ, σ2, σ3, τ, στ, σ2τ, σ3τ},

and we have G ∼= D8, the dihedral group with 8 elements.
Let H be the subgroup generated by τ . As τ fixes 4

√
2 and sends i 7→ −i, clearly the

fixed field ofH is Q( 4
√
2). So to find the intermediate fields between Q and Q( 4

√
2) we must

find the subgroups ofG containingH . If σ belongs to this subgroup then we would get the
whole group G and correspondingly we have Q. So the only possibility is the subgroup
generated by σ2 and τ (note that (σ3)3 = σ). The order of this subgroup is 4, and hence
the degree of the fixed field will be 2 over Q. Now σ2( 4

√
2) = − 4

√
2 ⇒ σ2(

√
2) =

√
2.

Clearly the field Q(
√
2) is contained in the fixed field. But as [Q(

√
2) : Q] = 2, it must be

the fixed field. By the fundamental theorem of Galois theory, this is the only intermediate
field between Q and Q( 4

√
2).

Problem 3.(i). If q = pn and α ∈ Fq, show that

(X − α)(X − αp) · · · (X − αpn−1

) ∈ Fp[X].

Proof. We know that Fq/Fp is a cyclic Galois extension of degree nwhere the Galois group
is generated by the automorphism σ : Fq → Fq such that σ(a) = ap for any a ∈ Fq. If we
denote the given polynomial by f(X), then

(σ · f)(X) = (X − σ(α))(X − σ(αp)) · · · (X − σ(αpn−1

))

= (X − αp)(X − αp2) · · · (X − αpn−1

)(X − αpn)
= (X − α)(X − αp) · · · (X − αpn−1

) (∵ σn = Id)

= f(X).

In other words f(X) is fixed by the automorphism σ and hence by Gal(Fq/Fp) as σ gen-
erates the Galois group. So we can conclude that f(X) ∈ Fp[X].

Problem 3.(ii). Show that all the irreducible polynomials of degree n over Fp divide
Xpn −X in Fp[X].

Proof. We are going to use the following fact : there exists finite fields of order pn for any
prime p and any integer n ≥ 1, and are unique up to isomorphism. In particular, such
a field can be realised as the set of solutions of the polynomial Xpn − X inside a given
algebraic closure of Fp.

Now let f(X) ∈ Fp[X] be an irreducible polynomial of degree n. Let α be a root of
f(X) in some algebraic closure of Fp. Now [Fp(α) : F] = deg(f) = n. Hence Fp(α) is a
finite field of order pn. By the above fact all of its elements are roots of the polynomial
Xpn − X . In particular α is a root of this polynomial. But by our choice the minimal
polynomial of α is f(X) ( or some scalar multiple). Hence f(X) must divide Xpn−X .

Problem 4.(i). Prove that there exists a Galois extension of Q whose Galois group is cyclic
of order 13.
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Proof. To construct an extension K/Q which is Galois and Gal(K/Q) ∼= Z13. Let E be the
splitting field of x53 − 1 over Q. We now use the following facts:

• for any integer n ≥ 1, let L be the splitting field of the polynomial xn−1 over Q, then
there exists a primitive nth root of unity in L and L = Q(ζ) where ζ is a primitive
nth root;

• the extension L/Q is Galois;

• the nth cyclotomic polynomial is irreducible in Q[x] and Gal(L/Q) ∼= (Z/nZ)∗.

In our situation n = 53 which is a prime number. Hence we know that the 53rd cyclotomic
polynomial x52 + x51 + · · · + x + 1 is irreducible, which implies that [E : Q] = 52 and
Gal(E/Q) ∼= (Z/53Z)∗ which is a cyclic group of order 52. Let σ be a generator of this
group. Now consider the element τ = σ13 and let H be the subgroup generated by τ . As
the Galois group is cyclic, H is a normal subgroup. In fact it is easy to check that |H| = 4.
Now by fundamental theorem of Galois theory, EH/Q is a Galois extension with Galois
group isomorphic to Gal(E/Q)/H . But this group is clearly cyclic and has order 13. Thus
EH = K serves our purpose.

Problem 4.(ii). LetE/F be n extension and let a ∈ E be algebraic and purely inseparable
over F , where char(F ) = p > 0. Prove that min(F, a) = (X − a)pn for some n.

Proof. Consult any text book of Galois theory.

Problem 5.(i). Let char(K) = p > 0, and let a ∈ K. If the polynomial Xp − X − a is
reducible in K[X], prove that all its roots lie in K.

Proof. Let f(X) = Xp−X−a. Assume that this polynomial is reducible in K[X]. We also
know that this polynomial is separable (because (f, f

′
) = 1). In fact if α is a root of f(X)

so is α + 1, · · · , α + p − 1. Thus we have accounted for the p distinct roots of f(X). Note
that if any one of the roots lie in K, all of the roots lie in K. So if any of the factors of f(X)
in K[X] is linear we are done.

Let g(X) ∈ K[X] be an irreducible factor of f(X). Let E (respectively F ) be the split-
ting field of f(X) (respectively of g(X). Then F ⊂ E. Now let β be a root of g(X) in F .
Obviously β is also a root of f(X) in E. Following the argument in the previous para-
graph, it is clear that β + 1, · · · , β + p − 1 are also roots of f(X) and all of them lie in F .
Hence F = E = K(β) and consequently [F : K] = deg(g) ⇒ [E : K] = deg(g). But the
same argument works for any irreducible factor of f(X) and it follows that all of them
have degree = [E : K]. As f(X) is separable, it must be product of distinct irreducible
polynomials .So if the number of distinct irreducible factors of f(X) is r, then we have
p = r[E : K]. As p is a prime, we must have r = 1 or r = p. If r = 1, then f(X) itself be-
comes irreducible, thus violating our assumption. So we must have r = p which implies
that all the factors are linear and hence we are done.

Problem 5.(ii). Let L/K be an extension such that each α ∈ L is algebraic and separable
over K with degree at the most d (independent of α). Show that [L : K] ≤ d.
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Proof. By our assumption L/K is a separable extension. Let

S = {all subfields of L containing K of degree ≤ d over K}.

By our hypothesis S 6= ∅, in fact for any α ∈ L, K(α) ∈ S. By Zorn’s lemma, there exists
maximal elements in S. Let E be a maximal element in S. We claim that E = L. If not,
pick α ∈ L − E. Now E/K is a finite, separable extension and hence E(α)/K is a finite
separable extension. By primitive element theorem, we must have E(α) = K(β) for some
element β ∈ E(α) ⊂ L. But we know that [K(β) : K] ≤ d, which implies that [E(α) : K] ≤
d. Hence E(α) ∈ S . By maximality of E, then we must have E(α) = E ⇒ α ∈ E. Thus
we have reached a contradiction. Hence E = L⇒ [L : K] ≤ d.

Problem 6.(i). Let L/K be a (finite) Galois extension. If the quotient group L∗/K∗ con-
tains an element of order n, show that L∗ must contain an element of order n.

Proof. Let a ∈ L∗ be an element such that its image in L∗/K∗ has order n. Hence an = b
for some b ∈ K∗. Consider the polynomial f(x) = (xn− b) ∈ K[x]. Then a is a root of f(x).
As a /∈ K, there must be some σ ∈ Gal(L/K) such that σ(a) 6= a ( because σ(a) = a ∀σ ∈
Gal(L/K)⇒ a ∈ K). Note that σ(a) is also a root of f(x) i.e (σ(a))n = b. Let σ1, · · · , σr be
all the elements in Gal(L/K) such that σi(a) 6= a. Define ci = σi(a)/a⇒ ci 6= 1, cni = 1. Let
us assume that the order of ci is mi, which implies mi|n, 1 ≤ i ≤ r. Let m be the l.c.m of
the mi’s, then m|n. Now for 1 ≤ i ≤ r, we have

cmi
i = 1⇒ σi(a

mi) = ami ⇒ σi(a
m) = am.

Hence for any σ ∈ Gal(L/K) we have σ(am) = am (if σ 6= σi, then σ(a) = a). So am ∈ K ⇒
n|m⇒ m = n. Let H = 〈c1, · · · , cr〉 be the subgroup of L∗ generated by the ci’s. Clearly H
is a finite abelian group. But we know that any finite multiplicative subgroups of fields
are cyclic. Hence H must be cyclic, say H = 〈x〉, and order of x (= |H|) must be equal to
the exponent of H . But clearly exponent of H is m, and hence order of x is m = n.

Problem 6.(ii). Prove that Q(ζn) can not contain a 4-th root of 2 for any n.

Proof. Let us fix an algebraic closure of Q. We will always be working within this field.
Let φ be the Euler’s phi function. We will use the following facts:

• for any n ∈ N, Q(ζn) is a Galois extension over Q where ζn is a primitive nth root of
unity;

• [Q(ζn) : Q] = φ(n) and Gal(Q(ζn)/Q) ∼= (Z/nZ)∗;

• for any prime p > 2 we have (Z/pkZ)∗ ∼= Z/φ(pk)Z;

• (Z/2Z)∗ = {1}, (Z/4Z)∗ ∼= Z/2Z and (Z/2kZ)∗ ∼= Z/2Z
⊕

Z/2k−1Z for k ≥ 3.
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If possible, let us assume that α ∈ Q(ζn) for some n. Now X4 − 2 is irreducible over
Q (look at Problem 2.(ii)). If one of its roots lie in Q(ζn), then it must split completely in
Q(ζn) (because Q(ζn)/Q is Galois). Let K be the splitting field of X4 − 2 in Q(ζn). We
know that K/Q is Galois of degree 8 and Gal(K/Q) ∼= D8 (look at Problem 2.(ii)). By
fundamental theorem of Galois theory Gal(K/Q) must be a quotient of Gal(Q(ζn)/Q). In
other words the group D8 must be a quotient of (Z/nZ)∗. From the facts stated above it
is clear that (Z/nZ)∗ can be written as a direct product of cyclic groups. Hence it must be
abelian and the same is true for its quotient groups. But we know that D8 is a nonabelian
group and thus we have arrived at a contradiction. So Q(ζn) can not contain a 4-th root of
unity for any n.
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